hessen.social ist einer von vielen unabhängigen Mastodon-Servern, mit dem du dich im Fediverse beteiligen kannst.
hessen.social ist die Mastodongemeinschaft für alle Hessen:innen und alle, die sich Hessen verbunden fühlen

Serverstatistik:

1,6 Tsd.
aktive Profile

#gdal

1 Beitrag1 Beteiligte*r0 Beiträge heute

I have a #GDAL / #QGIS question for the #GIS‌ commnunity in the Fediverse #askFedi concerning the use of geolocation arrays in raster datsets, i.e. in bands the hold (for example) the latitude and longitude of each cell in the raster.

I'm used to produce datasets in UTM format, for which adding the appropriate georeference metadata is simple. However, in this case I'm producing a raster dataset where the cells are distributed in a “warped” area (think aerial imagery with non-affine transform from data matrix to geo coordinates). I have arrays holding resp. the latitude and longitude of each pixel, and can add it to the dataset, I can specify the GCRS (lat/lon WGS84), but I can't seem to be able to find the metadata to add to the raster so that the goelocation arrays are correctly identified as such.

Online there seems to be only sparse documentation about this, generally implying that this is only supported for specific dataset types in specific formats (usually, the standard format from common satellite data) and the only pages I've found on how to “roll your own” refer to a single old-ish mailing list contribution that recommends the use of a sidecar VRT file. Are there any more modern solutions possible?

Antwortete im Thread

@vwbusguy From elevation data I derive four datasets: slope angle, elevation based colors, contour lines and hill shades. The latter could be made with #Blender, and it looks awesome, but its _really_ expensive and I haven't managed to fully automate it, so I use a tool called #GDAL like everybody else. Besides that, I use almost the same stack as #OpenStreetMap: #carto-css for styling, #mapnik for rendering, and my own set of tools for orchestrating and serving that.

👋 #introduction

🗺 Oslandia is a French SME specializing in OpenSource Geographical Systems ( #GIS ). We design and implement IT systems to manage geographical data.

🎓 We are an opensource editor of #QGIS, experts of #PostGIS, #GDAL, #Python, Web 3D visualization & more …

👩‍💻 Our team of ~30 (great) people is distributed all over France & full remote is at the heart of our organization.

🔗 More info : oslandia.com and linkedin

➡️ We will post company updates and GIS-related infos

OslandiaOSLANDIAFormations Postgresql Postgis QGis Web Data et 3D. Prestations de développement sur mesure. Audit et conseil en SIG libre.

I've added a new experimental branch to the #rstats rnaturalearth package to test reading data directly from the #GDAL virtual file system, supporting both raster and vector data.

This enhancement allows reading the data without needing to download and unzip it into a temporary folder.

You can try it here:

github.com/ropensci/rnaturalea

Feel free to give it a try, and let me know how it works for you!

GitHubGitHub - ropensci/rnaturalearth at feat/use-virtual-gdalAn R package to hold and facilitate interaction with natural earth map data :earth_africa: - GitHub - ropensci/rnaturalearth at feat/use-virtual-gdal

This {vrtility} 📦 project is still a WIP but I think the potential and flexibility of the approach is huge - basically just let #gdal do all the work. I've finally got my head around how the sequence of things should fit together but it is still missing a few important features. If you're interested in #rspatial #remotesensing I'd love your thoughts and feedback. powered by #gdalraster 🚀
github.com/Permian-Global-Rese

Fortgeführter Thread

we ran a multi-decade extraction of points-in-time for 46000 points 1993-2024 (at bottom level, it's variable so we indexed the level upfront for each point) ran this the "traditional way" using #terra #GDAL to extract points from relevant layers (point-sets grouped by date,level) for salt,temp,u,v,w,mld - ran on 28cpus with #furrr/#future took ~80min

will get a public dataset to repeat the example for illustration (elephant seals I hope)

#GDAL (non-multidim) *can* read your 1-row, 1-col or even 1-pixel array

this changes everything (the fact is that the NETCDF driver is more cryptic about the list of variables it will read this way , enough to have made me entirely wrong about this for a very long time)

that pixel value 1339 is days since as.Date("1978-01-01") + 1339 #rstats

proceed accordingly: gist.github.com/mdsumner/a9e74

Gistgdal_1D_promotion.mdGitHub Gist: instantly share code, notes, and snippets.

Do you want to contribute to an open source project?
Do you like/enjoy/love #GIS , #maps , #cartography , #surveying , #topography or #geodesy ?
Do you know C/C++? (this is optional)

You are very welcome to the communities of #GDAL or PROJ developers.
Join us!

gdal.org
proj.org

Wait a second: are you already coding in C++ or Python using these libraries? What are you waiting for!?

Hint: mailing lists are a good starting point ;)

gdal.orgGDAL — GDAL documentation

🍹 C'est l'heure du cocktail de bienvenue proposé par Satya !

- une dose de #ModernDataStack,
- un trait de géo,
- un zeste d'Open Source,
- et beaucoup d'amour 💗.

Cette recette vous est servie dans cet article qui détaille comment le Gard valorise ses géo-données.

:geotribu: geotribu.fr/articles/2025/2025

Relecture 🧐 : @geojulien & Michaël Galien

#PostgreSQL #PostGIS #GDAL #OGR #DBT #Metabase #ApacheAirflow

geotribu.frGeotribu - L'enjeu de la data au département du GardComment le département du Gard valorise son patrimoine de données classiques et de géo-données au travers de différents outils numériques.